1. Attempt to arrange in correct form $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\frac{\cos x}{x}$

Integrating Factor: $=\mathrm{e}^{\int \frac{2}{x} \mathrm{dx}},\left[\left(=\mathrm{e}^{2 \ln x}=\mathrm{e}^{\ln x^{2}}\right)=x^{2}\right]$
M1, A1
[$x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y=x \cos x$ implies M1M1A1]
$\therefore x^{2} y=\int x^{2} \cdot \frac{\cos x}{x} \mathrm{~d} x$ or equiv.
[IF. $y=\int$ I.F. (candidate's RHS)dx]

By Parts: $\left(x^{2} y\right)=x \sin x-\int \sin x \mathrm{~d} x$
i.e. $\left(x^{2} y\right)=x \sin x,+\cos x(+c)$
$y=\frac{\sin x}{x}+\frac{\cos x}{x^{2}}+\frac{c}{x^{2}}$

First M: At least two terms divided by x.
"By parts" M: Must be complete method, e.g $\int x^{" 2} \cos x \mathrm{~d} x$ requires
two applications
Because of functions involved, be generous with sign, but
$x \sin x \pm \int \cos x \mathrm{~d} x$ is M0
(S.C. "Loop" integral like
$\int \mathrm{e}^{x} \cos x \mathrm{~d} x$, allow M1 if two applications of "by parts", despite incomplete method)

Final A ft for dividing all terms by candidates IF., providing " c " used.
2. (a) $[(x>-2)]$: Attempt to solve $x^{2}-1=3(1-x)(x+2)$
$\left[4 x^{2}+3 x-\overline{7}=0\right]$
$x=1$, or
[$(x<-2)]$: Attempt to solve $x^{2}-1=-3(1-x)(x+2)$
Solving $x+1=3 x+6 \quad\left(2 x^{2}+3 x-5=0\right)$
$x=-\frac{5}{2}$
"Squaring"
If candidates do not notice the factor of $(x-1)^{2}$ they have quartic to solve;

Squaring and finding quartic $=0\left[8 x^{4}+18 x^{3}-25 x^{2}-36 x+35=0\right]$
Finding one factor and factorising $(x-1)\left(8 x^{3}+26 x^{2}+x-35\right)=0$
Finding one other factor and reducing other factor to quadratic,
likely to be $(x-1)^{2}\left(8 x^{2}+34 x+35\right)=0$
Complete factorisation $(x-1)^{2}(2 x+5)(4 x+7)=0$
[Second M1 implies the first, if candidate starts there or cancels $(x-1)^{2}$]
$x=1 \mathrm{~B} 1, x=-7 / 4 \mathrm{~A} 1, x=-5 / 2$
$x=1$ allowed anywhere, no penalty in (b)
(b) $-\frac{7}{4}<x<1$

One part
Both correct and enclosed
$x<-\frac{5}{2}$ \{Must be for $x<-2$ and only one value \}
Correct answers seen with no working is independent of (a) (graphical calculator) mark as scheme.
Only allow the accuracy mark if no other interval, in both parts \leq used penalise first time used
3. (a) $y=x^{-2} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=-2 x^{-3} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-2 x-3 t$ [Use of chain rule; need $\frac{\mathrm{d} x}{\mathrm{~d} t}$]
$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=-2 x^{-3} \frac{\mathrm{~d} t}{\mathrm{~d} t^{2}}, \quad, \quad+6 x^{-4}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}$
$\left(\div\right.$ given d.e. by $\left.x^{4}\right) \frac{2}{x^{3}} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{6}{x^{4}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{1}{x^{2}}-3$
becomes $\left(-\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=y-3\right) \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y=3$
AG
A1 cso5

Second M1 is for attempt at product rule. (be generous)
Final A1 requires all working correct and sufficient "substitution" work
(b) Auxiliary equation: $m^{2}+1=0$ and produce Complementary Function $y=\ldots$
(y) $=A \cos t+B \sin t$

Particular integral: $y=3$
\therefore General solution: $(y)=A \cos t+B \sin t+3$
Answer can be stated; M1 is implied by correct C.F. stated (allow θ for t)
A1 f.t. for candidates CF + PI
Allow $\mathrm{m}^{2}+\mathrm{m}=0$ and $\mathrm{m}^{2}-1=0$ for M1. Marks for (b) can be gained in (c)
(c) $\frac{1}{x^{2}}=A \cos t+B \sin t+3$
$x=\frac{1}{2}, t=0 \Rightarrow(4=A+3) A=1$
B1
Differentiating (to include $\frac{\mathrm{d} x}{\mathrm{~d} t}$): $-2 x^{-3} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-A \sin t+B \cos t$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=0, t=0 \Rightarrow(0=0+B) \quad B=0$
$\therefore \frac{1}{x^{2}}=3+\cos t$ so $x=\frac{1}{\sqrt{3+\cos t}}$
Second M : complete method to find other constant (This may involve solving two equations in A and B)
(d) (Max. value of x when $\cos t=-1$) so max $x=\frac{1}{\sqrt{2}}$ or AWRT 0.707
4. (a) $\begin{aligned} & x_{\mathrm{d} \mathrm{x}} r \cos \theta=4 \sin \theta \cos ^{3} \theta \\ & \mathrm{~d} \theta\end{aligned}=4 \cos ^{2} \theta-12 \cos ^{2} \theta \sin ^{2} \theta$

Solving $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=0 \quad\left[\frac{\mathrm{~d} x}{\mathrm{~d} \theta}=0 \Rightarrow 4 \cos ^{2} \theta\left(\cos ^{2} \theta-3 \sin ^{2} \theta\right)=0\right]$
$\sin \theta=\frac{1}{2}$ or $\cos \theta=\frac{\sqrt{3}}{2}$ or $\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6}$
AG
$r=4 \sin \frac{\pi}{6} \cos ^{2} \frac{\pi}{6}=\frac{3}{2}$
AG
A1 cso

A1cso6

So many ways x may be expressing e.g.
$2 \sin 2 \theta \cos ^{2} \theta, \sin 2 \theta(1+\cos 2 \theta), \sin 2 \theta+(1 / 2) \sin 4 \theta$
leading to many results for $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$
Some relevant equations in solving
$\left[\left(1-4 \sin ^{2} \theta\right)=0,\left(4 \cos ^{2} \theta-3\right)=0,\left(1-3 \tan ^{2} \theta\right)=0, \cos 3 \theta=0\right]$
Showing that $\theta=\frac{\pi}{6}$ satisfies $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=0$, allow M1 A1
providing $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ correct
Starting with $x=r \sin \theta$ can gain M0M1M1
(b) $A=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} r^{2} \mathrm{~d} \theta=\frac{1}{2} \cdot 16 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin ^{2} \theta \cos ^{4} \theta \mathrm{~d} \theta$
$8 \sin ^{2} \theta \cos ^{4} \theta=2 \cos ^{2} \theta\left(4 \sin ^{2} \theta \cos ^{2} \theta\right)=2 \cos ^{2} \theta \sin ^{2} 2 \theta$
$=(\cos 2 \theta+1) \sin ^{2} 2 \theta$
$=\cos 2 \theta \sin ^{2} 2 \theta+\frac{1-\cos 4 \theta}{2}=$ Answer
First M1 for use of double angle formula for $\sin 2 \mathrm{~A}$
Second M1 for use of $\cos 2 A=2 \cos ^{2} A-1$
Answer given: must be intermediate step, as shown, and no incorrect work
(c) Area $=\left[\frac{1}{6} \sin ^{3} 2 \theta+\frac{\theta}{2}-\frac{\sin 4 \theta}{8}\right]\left(\frac{\pi}{6}\right)$
ignore limits

$$
\begin{aligned}
& =\left(\frac{1}{6} \sin ^{3} \frac{\pi}{2}+\frac{\pi}{8}-\frac{\sin \pi}{8}\right)-\left(\frac{1}{6} \sin ^{3} \frac{\pi}{3}+\frac{\pi}{12}-\frac{\sin \frac{2 \pi}{3}}{8}\right) \text { (sub. limits) } \\
& =\left(\frac{1}{6}+\frac{\pi}{8}\right)-\left(\frac{\sqrt{3}}{16}+\frac{\pi}{12}-\frac{\sqrt{3}}{16}\right)=\frac{1}{6},+\frac{\pi}{24} \quad \text { M1 }
\end{aligned}
$$

For first M, of the form $a \sin ^{3} 2 \theta+\frac{\theta}{2} \pm b \sin 4 \theta$ (Allow if two of correct form) On ePen the order of the As in answer is as written
5. $\quad 1 \frac{1}{2}$ and 3 are 'critical values', e.g. used in solution, or both seen as asymptotes.
$(x+1)(x-3)=2 x-3 \Rightarrow x(x-4)=0$
$x=4, x=0$
M1: Attempt to find at least one other critical value
$0<x<1 \frac{1}{2}, 3<x<4$
M1: An inequality using $1 \frac{1}{2}$ or 3
First M mark can be implied by the two correct values, but otherwise a method must be seen. (The method may be graphical, but either ($x=$) 4 or ($x=) 0$ needs to be clearly written or used in this case). Ignore 'extra values' which might arise through 'squaring both sides' methods.
\leq appearing: maximum one A mark penalty (final mark).
6. Integrating factor $\mathrm{e}^{\int-\tan x \mathrm{dx}}=\mathrm{e}^{\ln (\cos x)}\left(\right.$ or $\left.\mathrm{e}^{-\ln (\sec x)}\right),=\cos x\left(\right.$ or $\left.\frac{1}{\sec x}\right)$
$\left(\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=2 \sec ^{2} x\right)$
$y \cos x=\int 2 \sec ^{2} x \mathrm{~d} x$ (or equiv.) (Or $\left.: \frac{\mathrm{d}}{\mathrm{d} x}(y \cos x)=2 \sec ^{2} x\right)$
$y \cos x=2 \tan x(+C)$ (or equiv.)
$y=3$ 2atain $\bar{x} Q: 3 C=3$
$y=\cos x \quad$ (Or equiv. in the form $y=\mathrm{f}(x)$)
$1^{\text {st }} \mathrm{M}$: Also scored for $\mathrm{e}^{\int \tan x \mathrm{~d} x}=\mathrm{e}^{-\ln (\cos x)}$ (or $\mathrm{e}^{\ln (\sec x)}$), then A0 for $\sec x$.
$2^{\text {nd }} \mathrm{M}$: Attempt to use their integrating factor (requires one side of the equation 'correct' for their integrating factor).
$2^{\text {nd }} A$: The follow-through is allowed only in the case where the integrating factor used is $\sec x$ or $-\sec x$. $\left(y \sec x=\int 2 \sec ^{4} x \mathrm{~d} x\right)$
$3^{\text {rd }}$ M: Using $y=3$ at $x=0$ to find a value for C (dependent on an integration attempt, however poor, on the RHS).

Alternative

$1^{\text {st }} \mathrm{M}$: Multiply through the given equation by $\cos x$.
$1^{\text {st }}$ A: Achieving $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=2 \sec ^{2} x$. (Allowing the possibility of integrating by inspection).
7. C.F. $m^{2}+3 m+2=0 \quad m=-1$ and $m=-2$

M1
$y=A e^{-x}+B e^{-2 x}$
P.I. $y=c x^{2}+d x+e$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 c x+d, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 c \quad 2 c+3(2 c x+d)+2\left(c x^{2}+d x+e\right) \equiv 2 x^{2}+6 x$
$2 c=2 \quad c=1 \quad$ (One correct value)
$d=0$
$2 c+3 d+2 e=0$
$e=-1 \quad$ (Other two correct values)
General soln: $y=A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x}+x^{2}-1 \quad$ (Their C.F. + their P.I.)

$(A+B=2)$
$1=-A-2 B$
Solving simultaneously: $A=5$ and $B=-3$
M1A1
Solution: $y=5 \mathrm{e}^{-x}-3 \mathrm{e}^{-2 x}+x^{2}-1$
$1^{\text {st }} \mathrm{M}$: Attempt to solve auxiliary equation.
$2^{\text {nd }} \mathrm{M}: \quad$ Substitute their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ into the $\mathrm{D}>\mathrm{E}>$ to form an identity in x with unknown constants.
$3^{\text {rd }} \mathrm{M}$: Using $y=1$ at $x=0$ in their general solution to find an equation in A and B.
$4^{\text {th }} \mathrm{M}$: Differentiating their general solution (condone 'slips', but the powers of each term must be correct) and using $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$ to find an equation in A and B.
$5^{\text {th }} \mathrm{M}$: Solving simultaneous equations to find both a value of A and a value of B.
8. (a)

Shape (close curve, approx. symmetrical about the initial line, in all 'quadrants' and 'centred' to the right of the pole/origin).
Shape (at least one correct 'intercept' r value... shown on sketch or perhaps seen in a table).
(Also allow awrt 3.27 or awrt 6.73).
(b) $y \mathrm{~d} y r \sin \theta=5 \sin \theta+\sqrt{3} \sin \theta \cos \theta \quad$ M1
$\overline{\mathrm{d} \theta}=5 \cos \theta-\sqrt{3} \sin ^{2} \theta+\sqrt{ } 3 \cos ^{2} \theta(=5 \cos \theta+\sqrt{ } 3 \cos 2 \theta)$
$5 \cos \theta-\sqrt{3}\left(1-\cos ^{2} \theta\right)+\sqrt{ } 3 \cos ^{2} \theta=0$
$2 \sqrt{3} \cos ^{2} \theta+5 \cos \theta-\sqrt{ } 3=0$
$\begin{array}{ll}(2 \sqrt{ } 3 \cos \theta-1)(\cos \theta+\sqrt{ } 3)=0 \quad \cos \theta=(\ldots(0.288 \ldots) \\ \theta=1.28 \text { and } 5.01 \text { (awrt) (Allow } \pm 1.28 \text { awrt) }\end{array}$ Alsoallow $\left.\pm \arccos \frac{1}{2 \sqrt{3}}\right)$
$r=5+\sqrt{3}\left(\frac{1}{2 \sqrt{3}}\right)=\frac{11}{2}$ (Allow awrt 5.50)
$2^{\text {nd }} \mathrm{M}$: Forming a quadratic in $\cos \theta$.
$3^{\text {rd }} \mathrm{M}$: Solving a 3 term quadratic to find a value of $\cos \theta$ (even if called θ).

Speacial case: Working with $r \cos \theta$ instead of $r \sin \theta$.
$1^{\text {st }} \mathrm{M} 1$ for $r \cos \theta=5 \cos \theta+\sqrt{ } 3 \cos ^{2} \theta$
$1^{\text {st }} \mathrm{A} 1$ for derivative $-5 \sin \theta-2 \sqrt{ } 3 \sin \theta \cos \theta$, then no further marks.
(c) $r^{2}=25+10 \sqrt{ } 3 \cos \theta+3 \cos ^{2} \theta$
$\int 25+10 \sqrt{3} \cos \theta+3 \cos ^{2} \theta \mathrm{~d} \theta=\underline{\frac{53 \theta}{2}+10 \sqrt{3} \sin \theta}+3\left(\frac{\sin 2 \theta}{4}\right)$
(ft for integration of $(a+b \cos \theta)$ and $c \cos 2 \theta$ respectively)
$\frac{1}{2}\left[25 \theta+10 \sqrt{3} \sin \theta+\frac{3 \sin 2 \theta}{4}+\frac{3 \theta}{2}\right]_{0}^{2 \pi}=\ldots .$.
$=\frac{1}{2}(50 \pi+3 \pi)=\frac{53 \pi}{2}$ or equiv. in terms of π.
$1^{\text {st }} \mathrm{M}$: Attempt to integrate at least one term.
$2^{\text {nd }} \mathrm{M}$: Requires use of the $\frac{1}{2}$, correct limits (which could be 0 to 2π, or $-\pi$ to π, or 'double' 0 to π), and subtraction (which could be implied).
9. (a) $\frac{y_{1}-0.2}{0.1} \approx\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{0}=0.2 \times \mathrm{e}^{0}(=0.2)$
(b) $\left.\quad \begin{array}{rl}\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right.\end{array}\right)_{0.2} \approx 0.22 \times \mathrm{e}^{0.01} \approx 0.2222 \ldots$
10. (a) $\left(1-x^{2}\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$

$$
\text { At } x=0, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{\mathrm{d} y}{\mathrm{~d} x}=1
$$

(b) $\left(\frac{\mathrm{d}^{2} y}{\mathrm{dx})^{2}}\right)_{0}=-4$

Allow anywhere

$y=\mathrm{f}(0)+\mathrm{f}^{\prime}(0) x+\frac{\mathrm{f}^{\prime \prime}(0)}{2} x^{2}+\frac{\mathrm{f}^{\prime \prime}(0)}{6} x^{3}+\ldots$

$$
=2-x-2 x^{2},+\frac{1}{6} x^{3}+\ldots
$$

11. (a) $z^{n}=(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ $z^{-n}=(\cos \theta+i \sin \theta)^{-n}=\cos (-n \theta)+i \sin (-n \theta)=\cos n \theta-i \sin n \theta$ both
Adding $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta^{*}$ cso
(b) $\left(z+\frac{1}{z}\right)^{6}=z^{6}+6 z^{4}+15 z^{2}+20+15 z^{-2}+6 z^{-4}+z^{-6}$
$=z^{6}+z^{-6}+6\left(z^{4}+z^{-4}\right)+15\left(z^{2}+z^{-2}\right)+20$

$$
64 \cos ^{6} \theta=2 \cos 6 \theta+12 \cos 4 \theta+30 \cos 2 \theta+20
$$

$$
32 \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10
$$

(c) $\int \cos ^{6} \theta \mathrm{~d} \theta=\left(\frac{1}{32}\right) \int_{\sin 4 \theta}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10) \mathrm{d} \theta$
$=\left(\frac{1}{32}\right)\left[\frac{\sin 6 \theta^{32}}{6}+\frac{6 \sin 4 \theta}{4}+\frac{15 \sin 2 \theta}{2}+10 \theta\right]$
M1A1ft
$[\ldots .]_{0}^{\frac{\pi}{3}}=\frac{1}{32}\left[-\frac{3}{2} \times \frac{\sqrt{3}}{2}+\frac{15}{2} \times \frac{\sqrt{3}}{2}+\frac{10 \pi}{3}\right]=\frac{5 \pi}{48}+\frac{3 \sqrt{3}}{32}$
M1A14
or exact equivalent
12. (a) Let $z=\lambda+\lambda \mathrm{i} ; w=\frac{\lambda+(\lambda+1) \mathrm{i}}{\lambda(1+\mathrm{i})}$
$=\frac{\lambda+(\lambda+1) \mathrm{i}}{\lambda(1+\mathrm{i})} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}$
M1
$u+\mathrm{i} v=\frac{(2 \lambda+1)+\mathrm{i}}{2 \lambda}$
$u=1+\frac{1}{2 \lambda}, v=\frac{1}{2 \lambda}$
A1

Eliminating λ gives a line with equation $v=u-1 \quad$ or equivalent
(b) Let $z=\lambda-(\lambda+1) \mathrm{i}: w=\frac{\lambda-\lambda \mathrm{i}}{\lambda-(\lambda+1) \mathrm{i}}$
$v=\frac{2 \lambda}{4 \lambda^{2}+4 \lambda+2}=\frac{(2 \lambda+1)-1}{(2 \lambda+1)^{2}+1}=\frac{\frac{u}{v}-1}{\left(\frac{u}{v}\right)^{2}+1}$
Reducing to the circle with equation $u^{2}+v^{2}-u+v=0 * \quad$ cso

Alternative 1

$$
\begin{aligned}
& \text { Let } z=\lambda-(\lambda+1) \mathrm{i}: w=\frac{\lambda-\lambda \mathrm{i}}{\lambda-(\lambda+1) \mathrm{i}} \\
& =\frac{\lambda-\lambda \mathrm{i}}{\lambda-(\lambda+1) \mathrm{i}} \times \frac{\lambda+(\lambda+1) \mathrm{i}}{\lambda+(\lambda+1) \mathrm{i}} \\
& u+\mathrm{i} v=\frac{\lambda(2 \lambda+1)+\lambda \mathrm{i}}{2 \lambda^{2}+2 \lambda+1} \\
& u=\frac{\lambda(2 \lambda+1)}{2 \lambda^{2}+2 \lambda+1}, v=\frac{\lambda}{2 \lambda^{2}+2 \lambda+1} \\
& u^{2}+v^{2}-u+v=\left(\frac{\lambda(2 \lambda+1)}{2 \lambda^{2}+2 \lambda+1}\right)^{2}+\left(\frac{\lambda}{2 \lambda^{2}+2 \lambda+1}\right)^{2}-\frac{\lambda(2 \lambda+1)}{2 \lambda^{2}+2 \lambda+1}+\frac{\lambda}{2 \lambda^{2}+2 \lambda+1} \\
& = \\
& =0^{*}
\end{aligned}
$$

Alternative 2

Let $z=\lambda-(\lambda+1) \mathrm{i}: u+\mathrm{i} v=\frac{\lambda-\lambda \mathrm{i}}{\lambda-(\lambda+1) \mathrm{i}}$
$(u+\mathrm{i} v)(\lambda-(\lambda+1) \mathrm{i})=\lambda-\lambda \mathrm{i}$
$u \lambda+v(\lambda+1)+[v \lambda-u(\lambda+1)] i=\lambda-\lambda 1$
Equating real \& imaginary parts
$u \lambda+v(\lambda+1)=\lambda(\mathrm{i})$ $v \lambda-\lambda u-u=-\lambda$ (ii)
From (i) $\lambda=\frac{v}{1-u-v}$
From (ii) $\lambda=\frac{u}{1-u+v}$
$\frac{v}{1-u-v}=\frac{u}{1-u+v}$
M1
Reducing to the circle with equation $u^{2}+v^{2}-u+v=0$ *
(c)

ft their line
B1ft
Circle through origin, centre in correct quadrant Intersection correctly placed

